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Abstract. This paper introduces a novel strategy for the task of simul-
taneously locating two key anatomical landmarks in retinal images of
the eye fundus, namely the optic disc and the fovea. For that, instead of
attempting to classify each pixel as belonging to the background, the optic
disc, or the fovea center, which would lead to a highly class-imbalanced
setting, the problem is reformulated as a pixelwise regression task. The
regressed quantity consists of the distance from the closest landmark
of interest. A Fully-Convolutional Deep Neural Network is optimized
to predict this distance for each image location, implicitly casting the
problem into a per-pixel Multi-Task Learning approach by which a glob-
ally consistent distribution of distances across the entire image can be
learned. Once trained, the two minimal distances predicted by the model
are selected as the locations of the optic disc and the fovea. The joint
learning of every pixel position relative to the optic disc and the fovea
favors an automatic understanding of the overall anatomical distribution.
This results in an effective technique that can detect both locations si-
multaneously, as opposed to previous methods that handle both tasks
separately. Comprehensive experimental results on a large public dataset
validate the proposed approach.

1 Introduction

Among the landmarks of interest in the human retina, the fovea (a small depression
in the macula center) and the optic disc (the location where the optic nerve and
blood vessels leave the retina) are key for diagnostic purposes. Consequently,
plenty of research has addressed their automatic location in the past [3,6, 10].

Most previous work approaches either the problem of detecting the optic disc
(OD) or the fovea. In the OD case, several techniques leverage the knowledge that
retinal vessels originate on it in order to find its center. This is typically achieved
by extracting geometrical and orientation information from the vascular tree [5].
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Fig. 1. Proposed approach for joint OD and fovea detection via regressing a distance
map from both landmarks to every other pixel in the image.

Fuzzy convergence algorithms [7], Hough transforms [9], and matched-filtering
approaches [8] have also been reported for the task of OD location.

Regarding fovea detection, in [6] authors proposed to pre-detect a region likely
to contain the fovea based on constraints on its anatomical position relative to
OD and blood vessels, with a subsequent thresholding stage to refine its location.

Several other works have reported results on both tasks, although solved in
separate stages. The method introduced in [14] analyzed the intensity differences
around the OD center to identify it, followed by a template matching technique
to locate the fovea. Template matching was also proposed in [16], coupled with
directional matched filters. The method in [11] devised a cost function based on a
set of global and local anatomical features that was then minimized to yield the
most likely locations of OD, fovea and vascular arch. The same authors re-defined
in [10] both tasks as regression problems, applying a k-NN strategy to estimate
OD and fovea location.

Fewer work has addressed the location of both anatomical landmarks simul-
taneously. In [3] a super-elliptical convergence index filter was applied for this
purpose, while in [2] two Convolutional Neural Networks (CNN) were built, the
first one aiming at locating a region of interest around both the OD and the
fovea, and the second one refining these predictions.

The main contribution of this work is a new strategy for jointly detecting the
OD and the fovea. In contrast with previous techniques, the proposed method does
not attempt to directly detect only OD and fovea centers. Instead, the distance
to both locations is regressed for every pixel in a retinal image, as illustrated
in Fig. 1. This regression problem can be effectively solved by means of a Fully-
Convolutional Neural Network. This strategy poses a multi-task-like problem,
on which information of every pixel contributes to generate a globally consistent
prediction map where likelihood of OD and fovea locations are maximized.

2 Joint Optic Disc and Fovea Detection Methodology

Next, the motivation for considering joint OD and fovea detection as a pixel-based
distance regression problem and the methodology to solve it are detailed.
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2.1 Casting the Problem into a Pixel-Wise Regression Task
In order to solve the joint detection of the OD and the fovea on retinal images,
we implicitly adopt a Multi-Task Learning (MTL) approach. MTL is known to
be an effective regularizing technique for machine learning models with a large
quantity of parameters to be learned, which are typically prone to overfitting.

MTL can be described as a strategy to improve generalization of machine
learning models based on solving simultaneously two or more related tasks. It has
been observed that this approach can improve learning of abstract representations,
which can be mutually useful for the range of tasks to be solved [13].

Jointly detecting the OD and the fovea can be considered as a pixelwise
classification problem, where there are three classes: background, OD location,
and fovea location. However, under this configuration, the resulting problem
becomes highly skewed in terms of examples for each class. A straightforward
MTL-like solution would consist on designing two sub-tasks, which would be
defined by binary classification problems, and solve them jointly. Nevertheless,
this approach would still suffer from a class imbalance issue that would complicate
substantially the optimization of a model in this setting.

In this paper, a pixel-wise MTL-like strategy is adopted. Instead of attempting
to classify each pixel into two or three classes, we reformulate the problem as
regressing the distance from each image location to the closest of both retinal
landmarks of interest. For this, we first define the Bi-Distance Map B(x, y) for
each pixel location (x, y) ∈ Ω, being Ω ⊂ R2 the image domain on which a retinal
image I(x, y) is defined. Given the location of the OD (xod, yod) and the fovea
(xfov, yfov), B(x, y) is defined as follows:

B(x, y) = min
(√

(x − xod)2 + (y − yod)2,
√

(x − xfov)2 + (y − yfov)2

)
. (1)

From the Bi-Distance Map definition, a normalized form, bounded in [0, 1], can
be easily built:

BN (x, y) =

1 − B(x, y)
max

Ω
B(x, y)

γ

, (2)

where γ is a decay parameter governing the spread of BN across the image domain.
The effect of modifying the decay parameter γ on the normalized Bi-Distance
Map is shown in Fig. 2.

The goal of the model designed in the next sub-section will be to produce an
accurate estimate of BN (x, y) simultaneously for every pixel. By casting the initial
classification problem into a pixel-wise regression task, the model is required to
solve a different task on each location, implicitly turning the regression of eq. (1)
into a hierarchical multi-task technique: 1) at a high-level, for each pixel location
the model needs to predict which landmark, the OD or the fovea, is closest to it,
and 2) at a low-level, for each pixel location the model is required to produce an
estimate of the distance to the closest landmark.

Hence, each pixel poses two independent but deeply related goals, effectively
regularizing the initial problem, and favoring a globally consistent solution.
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(a) (b) (c) (d) (e)

Fig. 2. (a) Retinal Image with O or F marked green and blue respectively. (b)-(f)
Normalized Bi-Distance Maps for different decays parameters: γ ∈ {1, 3, 5, 7}.

2.2 A Fully-Convolutional Deep Neural Network for Distance
Regression

In recent years, Convolutional Neural Networks (CNNs) have attained a remark-
able success in medical image analysis problems. Although CNNs were initially
employed for image classification tasks, subsequent advances allowed the appli-
cation of convolutional architectures for detection and segmentation tasks. For
the latter, a CNN is reformulated to produce pixel-wise classification based on
the ideas of Fully-Convolutional Neural Networks (F-CNN) and skip connections,
which enable the coupling of coarse and fine layers of a CNN. In our case, the
goal is also to assign a single prediction to each pixel, similarly to a segmentation
problem. However, this prediction should not match a discrete set of categories,
but rather be a continuous value in [0, 1].

According to the above considerations, our approach is to build on successful
F-CNN architectures tailored for segmentation problems, but modifying the
loss function to perform distance regression. A popular F-CNN architecture is
U-net, introduced in [12]. In U-Net, a contracting sub-network is coupled with
a symmetric upsampling sub-network in such a way that the representation
produced by the final layer of the upsampling path matches the dimensions of
the second last layer. This representation is then fused with the one coming from
the corresponding layer in the contracting section. This process is iterated until
the output of the upsampling path shares dimensionality with the initial input.
This results in a U-shaped architecture, whereby the output feature maps of
the contracting sub-network are effectively combined with the output from the
upsampling sub-network, providing multi-scale context to the model. The U-Net
based architecture employed in this paper is illustrated in Fig. 3.

Regarding the objective function employed to optimize the model Uθ, the
goal is to predict, for each pixel (x, y), BN (x, y) as defined in eq. (2). Given the
smooth nature of BN (x, y), we select a standard L2 loss for this task:

Lreg(θ) = 1
M

∑
x,y∈Ω

∥Uθ(x, y) − BN (x, y)∥2, (3)

where M is the number of pixels within a retinal image.
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Fig. 3. The proposed F-CNN architecture for Normalized Bi-Distance Map Regression.

The above loss is backpropagated to update iteratively the weights θ, with
mini-batch stochastic gradient descent using the Adam optimizer. The initial
learning rate was α = 0.01, and it was halved whenever the loss monitored on
the validation set was not observed to be improving 1.

2.3 Optic Disc and the Fovea Assignment

The output of the above model is a smooth prediction on distances to both
landmarks of interest. Out of this, a Laplacian-of-Gaussian operator was applied
in order to extract the two most prominent maxima.

Even if the outlined technique can find the locations of both landmarks, it is
unable to specify which of them corresponds to the OD and which one to the
fovea. Fortunately, this can be easily solved by a simple local intensity analysis
around the two detected maxima produced by Uθ. Specifically, the region around
the OD is typically brighter, whereas the fovea is generally darker than the
rest of the image. As such, the predicted locations were examined in a local
neighborhood of the original images, and the mean red intensity extracted. The
region with higher average intensity was selected as belonging to the OD.

3 Experimental Evaluation

3.1 Data

The model was trained and evaluated on the Messidor dataset [4]. Messidor
comprises 1200 retinal images of varying resolutions (2240 × 1488, 1440 × 960,
and 2304 × 1536 pixels). The locations of the fovea and the OD for 1136 of
these images were provided in [6]. The OD centroids were extracted from these
segmentations and used to define their location.

The available 1136 images were divided into two sets containing 568 images,
and the proposed model was trained alternately on one subset and tested on the
other one, reporting average performance. During training, 20% of the data was
separated and employed to monitor the value of the loss in eq. (3).

1 An implementation can be found at github.com/minesmeyer/od-fovea-regression.

github.com/minesmeyer/od-fovea-regression
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Fig. 4. Euclidean Distance Error (EDE) distributions in pixels for varying decay
parameters.

3.2 Evaluation Approach

In order to provide a standardized and fair comparison to prior work, we adopt the
evaluation approach from [6]. Accordingly, we calculated the Euclidean distance
between the ground-truth OD and fovea coordinates and their predicted positions.
Predictions falling within a certain distance of the ground-truth are considered
successful. This distance is set as a multiple of the OD radius R, and different
distances are considered: (1/8)R, (1/4)R, (1/2)R and 1R.

Since R varies between images with different resolutions, a separate R was
set for each of the three resolutions in the dataset. Namely, R = 68 for resolution
1440 × 960, R = 103 for resolution 2240 × 1488 and R = 109 for resolution
2304 × 1536. Following [6] and [9], we also compute the mean euclidean distance
(D̄) between predicted and ground-truth positions normalized by the FOV
diameter (D̄F OV = (D(pexp, preal)/dF OV · 100)) and by the OD radius (D̄R =
(D(pexp, preal)/R · 100)).

3.3 Quantitative Evaluation

Initially, the decay parameter γ defined in eq. (2) was varied in the range of
{1, 2, . . . , 9} with the goal of estimating the most appropriate value. In order
to avoid contaminating the training data, we performed this experiment on an
independent dataset provided in [1], which contains 413 retinal fundus images
and corresponding annotations for OD and fovea centers. The resulting mean
distances for both landmarks are presented in Fig. 4. From this experiment,
we selected γ = 7 as a good decay parameter, since it achieved a low error in
combination with the lowest standard deviations in both tasks.

After fixing γ = 7, we proceed to train on the Messidor dataset as specified
in the previous section. Table 1 presents the obtained results in comparison to
the state-of-the-art in terms of R criteria and average normalized Euclidean
distances. When considering the median values of D̄F OV and D̄R, OD and fovea
detection reached a mean/median of D̄R = 15.01/9.87 and D̄F OV = 0.94/0.70
respectively, which comes close to human observer performance. The proposed
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Table 1. Performance comparison of the proposed model on OD and fovea detection.

Optic Disc Detection No. Images 1/8R 1/4R 1/2R 1R D̄F OV D̄R

Al-Bander et al. [2] 1200 − 83.6 95.00 97.00 − −
Yu et al. [16] 1200 − − 99.08 98.24 − −
Marin et al. [9] 1200 87.33 97.75 99.50 99.75 − 7.03
Proposed Approach 1136 65.58 93.57 97.10 98.94 1.12 15.01
Fovea Detection
Gegundez-Arias et al. [6] 800 82.00 94.25 95.88 96.50 1.41 −
Yu et al. [16] 800 23.63 64.88 94.00 98.00 2.34 −
Niemeijer et al. [10] 800 76.88 93.25 96.00 97.38 1.87 −
Dashtbozorg et al. [3] 1200 − 66.50 93.75 98.87 − −
Al-Bander et al. [2] 1200 − 66.80 91.40 96.60 − −
Proposed Approach 1136 70.33 94.01 97.71 99.74 0.94 12.55
Human observer [6] 800 94.38 98.50 99.88 99.88 0.52 −

technique achieves a high detection performance in the two tasks, and surpasses
other state of the art methods in fovea detection for 1/2R and 1R criteria.

The generalization ability of the model was evaluated by means of a cross-
dataset experiment on the DRIVE dataset [15]. Results for OD detection in this
case were well-aligned with current techniques, meeting the 1R criterion in 97.5%
of the cases. It is worth noting that the method failed only in one image, which
contains a highly degenerated OD. Excluding this fail case, the method achieved
a mean normalized distance D̄F OV from the OD centroid of 2.99.

4 Conclusions and Future Work

A novel approach for jointly detecting the OD and fovea centers has been presented.
The proposed technique is based on regressing the distance from each pixel to the
closest of both landmarks. A F-CNN is optimized to solve this task, achieving
competitive results in OD detection and surpassing the current state-of-the-art
in fovea location.

The idea of replacing single-point landmark location by distance map regres-
sion is not limited to the task of OD and fovea detection. Therefore, in the future,
different medical image analysis problems involving similar detection challenges
may benefit from an analogous approach.
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