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ABSTRACT

Lung volume segmentation is a key step in the design of
Computer-Aided Diagnosis systems for automated lung
pathology analysis. However, isolating the lung from CT
volumes can be a challenging process due to considerable
deformations and the potential presence of pathologies. Con-
volutional Neural Networks (CNN) are effective tools for
modeling the spatial relationship between lung voxels. Unfor-
tunately, they typically require large quantities of annotated
data, and manually delineating the lung from volumetric CT
scans can be a cumbersome process. We propose to train
a 3D CNN to solve this task based on semi-automatically
generated annotations. For this, we introduce an extension
of the well-known V-Net architecture that can handle higher-
dimensional input data. Even if the training set labels are
noisy and contain errors, our experiments show that it is pos-
sible to learn to accurately segment the lung relying on them.
Numerical comparisons on an external test set containing
lung segmentations provided by a medical expert demon-
strate that the proposed model generalizes well to new data,
reaching an average 98.7% Dice coefficient. The proposed
approach results in a superior performance with respect to the
standard V-Net model, particularly on the lung boundary.

Index Terms— Lung Volume Segmentation, CT scans

1. INTRODUCTION

In Computer-aided diagnosis of pulmonary diseases, lung
volume segmentation is a key preliminary pre-processing
stage intended to isolate the lung from the background. Ac-
curate lung segmentation allows to avoid processing irrele-
vant information and enables false positive removal, thereby
preventing potentially incorrect diagnosis.

Automated methods for lung segmentation have been de-
veloped along the years, especially on Computer Tomography
(CT) images. Most of them are threshold [1] or region-based
[2], relying on intensity levels, contrast and neighborhood ho-
mogeneity. More sophisticated methods are based on prior
anatomical knowledge, like atlas-based methods, which rely
on the registration of the target image to a template contain-
ing labels of the thoracic region [3]. Neighboring anatomy-

guided methods use spatial information about the surrounding
organs to delineate lung regions, simplifying the segmenta-
tion task when abnormalities or artifacts are present. Hybrid
approaches combining fast traditional threshold-based tech-
niques with more sophisticated multi-atlas methods have also
been proposed [4]. In this case, a segmentation obtained using
conventional approaches is examined for errors, and corrected
by means of more time-consuming atlas-based methods.

Deep Learning techniques has also been proposed for seg-
menting organs from CT scans. Dou et al. [5] proposed a
3D deeply supervised model based on a Fully-Convolutional
Neural Network (F-CNN) to automatically segment the liver
on CT images. For segmenting multiple organs in CT scans,
Roth et al. [6] adapted an existent architecture called 3D U-
Net [7]. For lung segmentation in CT scans, Harrison et al.
[8] introduced a deep architecture termed Holistically-Nested
Network. This model was particularly accurate at finely de-
lineating lung borders. A progressive multi-path scheme was
also implemented in order to deal with output ambiguity and
coarsening resolution, resulting in an extended method called
Progressive Holistically-Nested Network.

Deep neural networks are known to require large quanti-
ties of annotated data. Unfortunately, for the problem of lung
segmentation, few public data sources exists. However, semi-
automatic segmentations of the lung in CT scans can be eas-
ily generated. In the LUng Nodule Analysis 2016 (LUNA16)
challenge [9], such ground-truth was provided based on CT
scans from the Lung Image Database Consortium and Im-
age Database Resource Initiative. Lung segmentations were
generated by a semi-automatic method [4], resulting in rea-
sonably accurate annotations, see Figure 1. However, these
annotations were not perfect nor validated by a medical doc-
tor, and hence not usable for clinical evaluation purposes.
Noisy ground-truth and pseudo-labels have recently proven
useful for training deep learning-based segmentation models
on brain MRI images achieving good performance when eval-
uated with clinically corrected ground-truth [10].

In this paper we propose two main contributions. First, we
show that semi-automatically generated (and thus imperfect)
volumetric lung segmentations can be employed for train-
ing a deep neural network, resulting in great performance
when evaluated in expert-labeled data. Second, we introduce
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Fig. 1: (a) A volumetric lung CT scan from the LUNA16
dataset [9] (b) Automatically generated lung segmentation.

a methodological modification to a popular 3D deep architec-
ture in order to handle input of high spatial resolution without
losing the ability to capture fine details at lung borders.

2. METHODOLOGY

2.1. Model Architecture

The U-Net architecture [11] is one of the most popular tech-
niques for medical image segmentation. Its architecture is an
extension of F-CNNs consisting of a downsampling followed
by an upsampling path. In the downsampling path the input
traverses several layers of convolutional blocks that reduce
the spatial resolution of the output volumes. Along the up-
sampling path, skip connections add back information from
higher scales of the image present in the encoder part of the
model. Several three-dimensional versions of the U-Net, e.g.
3-D U-Net [7] or V-Net [12]. In both cases, the spatial reso-
lution of the input images remained limited (245× 244× 56
for the former, 128× 128× 64 for the latter) due to memory
constraints. A simple solution is resizing the spatial dimen-
sions of the data to fit the input of the architecture, but this
strategy can lead to a critical loss of relevant information. An
alternative approach consists of dividing the data into volu-
metric input patches. The output of the model is then a spatial
reconstruction of several outputs, corresponding to the initial
division of the input volume. With this procedure, small de-
tails are not lost, but certain contextual information is missed
at the boundaries of the divided sub-volumes.

We introduce a novel strategy to deal with large data di-
mensionality while avoiding information loss. For this, we
modify the original V-Net architecture, introducing a max-
pooling layer early in the model in order to reduce its dimen-
sionality from 512×512×256 to the conventional 128×128×
64 of V-Net. To mitigate information loss, we introduce a skip
connection between the input of our architecture and the last

convolutional layer. We also introduce another relevant mod-
ification to the original V-Net design: we reduce the number
of filters in our model to 2/3 of the ones used in the origi-
nal architecture. We experimentally verified that the resulting
model is less prone to overfitting, and still produces highly
accurate predictions. Finally, ReLU non-linearities were re-
placed by PReLu activation functions that with their adaptive
learning coefficient for negative values have shown better re-
sults [13], and batch normalization was also incorporated. An
overall diagram of the proposed architectural design is repre-
sented in Fig. 2.

2.1.1. Loss Function

The loss function minimized during training the proposed
model is a modified version on the Dice coefficient, which
can measure overlap volume between three-dimensional ob-
jects:

xD(P,G) =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

, (1)

where N is the number of voxels on each image, pi ∈ P is a
voxel pi within the predicted segmentation P , and gi ∈ G is
the binary ground-truth.

2.2. Semi-Automatically Generated Ground-Truth and
Training

The data used for training the above model consisted of 888
CT scans, accompanied by volumetric lung segmentations for
each scan. Such segmentations were generated automatically,
and may contain certain amount of errors. Accordingly, these
annotations should not be used as a reference in any segmen-
tation study. It is important to stress that these segmentations
are not used for testing our algorithm, but only to train the
model. The main hypothesis we aim to verify is that a deep
CNN can be trained on such imperfect noisy ground-truth and
still learn useful representations. The model is thus trained to
generate lung segmentations that are to be validated in test
time with a separate dataset of manually delineated lung vol-
umes, see Section 3.1.

For training, the available data was randomly divided into
700 scans and 188 for validation. The scans had a fixed spa-
tial resolution of 512 and a slice thickness ranging between
0.6mm to 2.5mm. Depth resolution was mapped to a common
value of 256 voxels. Since in CT scans most relevant infor-
mation lies in the Houndsfield units range of [−1000; 400],
information outside this range was omitted. Standard data
augmentation techniques (spatial shifting, zooming along the
depth axis) were applied to increase the training data.

The model was trained with standard backpropagation for
12 epochs using the Adam Optimizer [14] and a learning rate
of 1e−3. The loss defined in eq. (1) was monitored in the val-
idation set, and training was early-stopped when no improve-
ment was observed for a pre-determined number of epochs.



  

Fig. 2: The proposed model, based on the V-Net, with the addition of an extra initial layer and skip connections allowing to
deal with 512× 512× 256 size input CT scans.

3. EXPERIMENTAL SETTING

3.1. Test Set

The proposed method was evaluated with data from the VES-
SEL12 Challenge consisting 20 healthy and pathological
chest CT scans of size 512 × 512, with a variable depth res-
olution of a maximum spacing of 1mm. The lung volume
ground-truth data was acquired and validated by an expert ra-
diologist. It contains labels for different lung lobes intended
to train lobe segmentation algorithms [15] [16]. Since we
were only interested in the overall lung region, we merge the
annotations from all lobes into a single label.

3.2. Experimental Evaluation

For performance evaluation, two different metrics were con-
sidered. First the DICE coefficient was computed to assess
the degree of overlap between expert ground-truth and pre-
dictions of our model, as compared with the standard V-Net.
However, comparing overlap between relatively large objects
with the DICE score may be slightly misleading, since er-
rors present in borders have a low impact. As such, for a
more fair experimental evaluation, the predicted segmenta-
tions were also assessed by the Average Symmetric Surface
Distance (ASD). ASD is a surface distance metric that mea-
sures the average distance of all the points of the surface of

the 3D segmentation with their closest points in the surface
associated to the ground-truth:

ASD =

∑
x∈Bseg

d(x,Bgt) +
∑

x∈Bgt
d(y,Bseg)

|Bseg|+ |Bgt|
·

4. RESULTS AND DISCUSSION

Figure 3 b) shows an example of a prediction generated by our
method, which in this case produces a fine lung volume seg-
mentation. For comparison purposes, we trained a standard
V-Net on the same dataset. The model received as input the
downsampled CT scan to 128 × 128 × 64. In Figure 3 c) we
present a prediction generated by the V-Net of the same CT
scan shown. A more detailed visual comparison is provided
in Figure 3 d), e) and f). As can be observed, the volume
in general is well predicted by both models, although the ap-
proach introduced in this paper achieves a more finely delin-
eated boundary, as opposed to the stair-casing effects along
the lung borders produced by V-Net. Nevertheless, both re-
sults are relatively satisfactory, validating our hypothesis that
a deep 3D CNN can be effectively trained on the kind of noisy
ground-truth used in this work.

Dice coefficients and ASM scores on the entire available
test set are reported in Table 1. Both methods achieve sat-
isfactory Dice scores, which demonstrates that both models
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Fig. 3: Coronal view view of a CT scan from our test set. a), d): expert-labeled ground-truth. b), e): Segmentation produced by
the proposed model. c), f) Result generated by a standard V-Net model.

Table 1: Comparison of the Dice Coefficient and Average
Symmetric Surface Distance (ASD) of the results from the
proposed model and V-Net.

Dice Coefficient (%) ASD (mm)
V-Net 97.2 2.627
Ours 98.7 0.576

learned to properly segment the lung volume, even when
trained on imperfect ground-truth. Furthermore, the proposed
model achieves a slightly better Dice coefficient than the stan-
dard V-Net. This is confirmed by the ASD values obtained
by each model. The ASD achieved by the proposed extension
to V-Net seems to be better capable of handling lung surface
voxels, resulting in better segmented boundaries.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that modern 3D seg-
mentation methods based on Deep CNNs can be effectively
trained on imperfect automatically generated ground-truth for
the task of lung volume segmentation from CT scans. In ad-
dition, we introduce an extension of the well-known V-Net
architecture that can handle better surface voxels inside the

lung. The proposed model can accepts scans of a 512×512×
256 resolution, thereby avoiding any initial information loss,
and properly dealing with memory constraints. The proposed
model produces highly accurate lung volume segmentations
when validated in an external test set containing ground-truth
provided by a medical expert, achieving a Dice Coefficient of
98.7% and an Average Surface Distance of 0.576mm. which
are superior to results produced by a standard V-Net.

In future work, modification to the loss function driving
the optimization process will be explored, in order to dedi-
cate more attention to boundary errors. Another interesting
research direction is the potential extension of the segmen-
tation method to other pulmonary regions for which manual
ground-truth is hard to acquire, based on automatically gener-
ated segmentations that may be used for training such models.
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