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Abstract—Assessment of retinal vessels is fundamental for
the diagnosis of many disorders such as heart diseases, diabetes
and hypertension. The imaging of retina using advanced fundus
camera has become a standard in computer-assisted diagnosis
of opthalmic disorders. Modern cameras produce high quality
color digital images, but during the acquisition process the
light reflected by the retinal surface generates a luminosity
and contrast variation. Irregular illumination can introduce
severe distortions in the resulting images, decreasing the visi-
bility of anatomical structures and consequently demoting the
performance of the automated segmentation of these structures.

In this paper, a novel approach for illumination correction of
color fundus images is proposed and applied as preprocessing
step for retinal vessel segmentation. Our method builds on
the connection between two different phenomena, shadows and
haze, and works by removing the haze from the image in the
inverted intensity domain. This is shown to be equivalent to
correct the nonuniform illumination in the original intensity
domain. We tested the proposed method as preprocessing
stage of two vessel segmentation methods, one unsupervised
based on mathematical morphology, and one supervised based
on deep learning Convolutional Neural Networks (CNN). Ex-
periments were performed on the publicly available retinal
image database DRIVE. Statistically significantly better vessel
segmentation performance was achieved in both test cases when
illumination correction was applied.

Keywords-retina; vessel segmentation; illumination correc-
tion; dehazing.

I. INTRODUCTION

Retinal photography requires the use of a fundus cam-

era, which is a specialized low power microscope with

an attached camera capable of simultaneously illuminating

and imaging the retina. It is designed to image the inte-

rior surface of the eye, which includes the retina, optic

disc, macula, and posterior pole [1]. Retinal fundus images

are widely used for diagnosis, screening and treatment of

cardiovascular and ophthalmologic diseases [2], including

age-related macular degeneration and diabetic retinopathy

that are considered two leading causes of blindness in

the industrialized countries [3]. These diseases are also

known to affect the appearance of the blood vessels in the

retina. Morphological attributes such as length, width, and

branching angles can be extracted from the vascular tree to

detect the presence and the severity of these disorders [4].

However, manual segmentation of retinal blood vessels is a

long and tedious task which requires extensive training and

skill. Automatic segmentation of retinal vessels is highly

desirable in Computer-Aided Diagnosis systems for large-

scale screening of ophthalmic disorders [5]. Recent years

have witnessed the rapid development of methods for retinal

vessel segmentation, as evidenced by extensive reviews [6].

Supervised methods use labeled data to train a classifier

that discriminates between vessel and non-vessel pixels. For

example, K-Nearest Neighbors [7], Support Vector Machine

[8], AdaBoost [9], and deep learning Convolutional Neural

Networks (CNN) [10]. Unsupervised methods use filter re-

sponses [11], mathematical morphology [12] or other model-

based techniques [13].

Among the problems faced by all these methods, there

is nonuniform image illumination resulting from image ac-

quisition. The incident light is shone in through the pupil as

the image is acquired, and the spherical geometry of the eye

creates significant interreflection and shading artifacts [14].

Correction of these illumination inhomogeneities is highly

desirable for obtaining high quality results of retinal blood

vessel segmentation. Several techniques have been proposed

over the years to improve uneven illumination and contrast

levels in retinal fundus images. For instance, methods that

estimate the illumination profile using B-spline based models

[15] or Laplace interpolation [16], and methods that work

in the frequency domain with filtering approaches [17] or

gradient distribution analysis [18]. The interested reader can

refer to Rasta et al. [19] for a recent and more comprehensive

review of this field.

In this work, we propose a novel method that builds on

the connection between shadows and haze, an apparently

unrelated phenomenon that causes image degradation due

to atmospheric absorption and scattering. We show that

removing the haze from the image in the inverted intensity
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domain is equivalent to correct the nonuniform illumination

in the original intensity domain. We implemented and tested

two different vessel segmentation methods to verify the

effectiveness of the proposed method as preprocessing stage.

The first is an unsupervised method based on a sequence of

denoising and morphological filters, whereas the second is

a supervised method based on a customized deep learning

Convolutional Neural Network (CNN).

II. ILLUMINATION CORRECTION BY DEHAZING

The problem of illumination correction consists of solv-

ing the illumination-reflectance model of image formation

described by the following multiplicative relationship:

I(x) = i(x)r(x) (1)

where I(x) is the captured image intensity (graylevel or

RGB) corresponding to the pixel x, i(x) describes the

illumination conditions affecting the scene, and r(x) is the

true reflectance of the object that we want to estimate.

Assuming image intensities normalized in [0, 1], we can

solve this problem in the inverted intensity domain 1− I(x)
so that Eq. 1 rewrites as:

1− I(x) = 1− i(x)r(x) (2)

which by simple algebraic manipulations can be written as:

1− I(x) = (1− r(x)) i(x) + 1− i(x) (3)

Let us now denote with Ĩ(x) = 1−I(x) and r̃(x) = 1−r(x)
the captured intensity and true reflectance in the inverted

intensity domain, respectively. Then, Eq. 3 rewrites as:

Ĩ(x) = i(x)r̃(x) + 1− i(x) (4)

which is closely related to the problem of haze degradation

modeled by the following image formation law [20]:

I(x) = t(x)R(x) +A−At(x) (5)

where R(x) is the radiance in a hypothetical haze-free scene,

t(x) is the transmission of light in the atmosphere, and A is

the predominant color of the atmosphere. Following [21], we

can assume that the input image has been white-balanced, so

that the greatest intensity in the image is white and A can be

approximated by A ≈ (1, 1, 1). Then, the haze degradation

model simplifies in:

I(x) = t(x)R(x) + 1− t(x) (6)

which is the dual formulation of Eq. 4 that can be obtained

by exchanging r(x) with R(x) (reflectance with radiance)

and i(x) with t(x) (illumination with transmission).

The dualism between dehazing and illumination correc-

tion is supported by the key observation that haze and

shadows share a common feature: both are low-frequency,

slowly varying phenomena. The presence of haze drives true

colors towards white, whereas shadows drive them towards

darker intensities. According to this, we can reformulate the

illumination correction problem as follows:

1) given an image I(x) affected by the presence of

shadows, invert its intensities Ĩ(x) = 1− I(x)
2) in the inverted intensity domain Ĩ(x), solve the prob-

lem of haze removal by estimating t(x) and factoring

the true radiance R(x)
3) invert the intensities of R(x) to get the illumination

corrected image

To estimate t(x), we apply the popular Dark-Channel

prior method [22]. It is based on the observation that most

local patches in haze-free images contain some pixels which

have very low intensity in at least one color channel (the so-

called dark channel). Using this prior with the haze imaging

model, it is possible to directly estimate t(x) as:

t(x) ≈ 1− ω
Ĩdark(x)

A
(7)

where ω is a constant parameter, and Ĩdark(x) is the dark

channel of the inverted image Ĩ(x) estimated in a local

neighborhood Ω(x) as:

Ĩdark(x) = min
c∈{R,G,B}

(
min

z∈Ω(x)
Ĩ(z)

)
(8)

The result of applying this technique with ω = 0.9 and a

neighborhood of side d = 20 pixels is shown in Fig. 1.

III. DATASET

The proposed approach for illumination correction was

applied to the images of the Digital Retinal Images for

Vessel Evaluation (DRIVE) publicly available database [23].

This dataset has been established to enable comparative stud-

ies on segmentation of blood vessels in retinal images. The

photographs for the DRIVE database were obtained from a

diabetic retinopathy screening program in The Netherlands.

The images were acquired using a Canon CR5 non-mydriatic

3CCD camera with a 45 degree field of view (FOV).

Each image was captured using 8 bits per color plane and

consisted of 768 × 584 pixels. The dataset consisted of 40

images equally distributed in a training and test set. We

applied our illumination correction on both training and

test sets with parameters ω = 0.9, and d = 20 chosen in

relation to the vessel width. These parameters were fixed

at the beginning of our experiments and were not varied

afterwards.

IV. RETINAL VESSEL SEGMENTATION

A. Unsupervised

The unsupervised retinal vessel segmentation that we

implemented consists of three steps: (i) green channel extrac-

tion; (ii) denoising; and (iii) vessel enhancement by means

of grayscale mathematical morphology. These steps are

detailed as follows. First, the green channel is extracted from

the RGB image since it provides better vessel-to-background
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Figure 1. (a) A retinal image suffering from the presence of nonuniform illumination, and (b) the result of the illumination correction by dehazing.

contrast compared to the other two channels. Then, non-

local means denoising [24] is applied. This algorithm re-

duces the noise while preserving the characteristics of the

vessel intensity profiles. A vessel is characterized by a dark

pattern with Gaussian-shape cross-section profile, piecewise

connected, and locally linear. This key observation allows

us to enhance vessels with a series of morphological top-

hat transforms, each targeting a specific vessel orientation.

Given the input image f , the black top-hat transform (BTH)

is defined as the difference between the closing of f and f :

BTH(f, b) = f • b− f (9)

where f • b denotes the closing of f by the structuring

element (SE) b. This operation enhances the objects that are

smaller than b (i.e., in which b does not fit) and darker than

their surroundings. In this context, b is chosen as a linear

SE bL slightly longer than the width L of primary (large)

vessels. In this way, all the vessels orthogonal to bL will be

enhanced by BTH(f, bL). Applying multiple BTH(f, bθL)
for N different angles θ equally spaced in [0, π) will enhance

different portions of the vessel tree. The sum of top-hats

(STH) yields the enhancement of the entire vessel tree:

STH(f, bL) =
∑
θ

(
f • bθL − f

)
(10)

which can be thresholded to generate the vessel tree segmen-

tation according to the desired sensitivity/specificity level.

The length L of bL and the number N of angles were

chosen as L = 16 and N = 12 based on the visual

inspection of the images and on the segmentation accuracy

achieved on the training set. Of note, the performances did

not vary significantly in the parameter range L ∈ [12, 20]
and N ∈ [10, 16], suggesting that this approach is robust

with respect to the choice of its parameters.

B. Supervised method

We used a supervised approach for retinal vessel segmen-

tation based on CNN. A CNN is an ensemble of units, each

involving several weighted inputs and one output, perform-

ing convolution of inputs with weights and transforming the

outcome according to a nonlinear activation function. Units

are arranged in layers and usually share the same weights

so as to produce a feature map and reduce the number

of parameters. In a typical CNN architecture, convolutional

layers interlaced with max-pooling layers that aggregate the

outputs of multiple units and return the maximum. The final

decision is made through one or more fully connected layers

that consider all the outputs of the units of the previous layer.

In this paper, we used a CNN inspired by the work

of Liskowski and Krawiec [10] that recently obtained the

state-of-the-art performance in the automated retinal vessel

segmentation. To train the network, image patches of di-

mensions 27x27 were extracted from the green channel of

the 20 images of the training set. Each patch was associated

to a binary class label (vessel or background) according to

the class of the central pixel of the patch. Only patches

that completely fit in the field of view were considered. For

the training phase we randomly sampled 800, 000 patches,

equally divided into vessels and background, whereas for

the test phase all the patches extracted from each test image

were considered. The network architecture is reported in

Table I together with the parameters of each layer. All

the convolutional layers were equipped with the Rectified

Linear Units (ReLU) that apply a nonsaturating activation

function (f(x) = max(0, x)). Two dropout layers were also

used after the first two fully connected layers to reduce

overfitting. The dropout was performed with a probability

of 0.5 indicating that, at each training stage, half of the
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Table I
ARCHITECTURE OF THE CNN

Layer Type Output size Kernel Size Stride Padding

0 Input 1× 27× 27

1 Convolutional 64× 26× 26 4× 4 1 1

2 ReLU 64× 26× 26

3 Convolutional 64× 26× 26 3× 3 1 1

4 ReLU 64× 26× 26

5 Max pooling 64× 13× 13 2× 2 2 0

6 Convolutional 128× 13× 13 3× 3 1 1

7 ReLU 128× 13× 13

8 Convolutional 128× 13× 13 3× 3 1 1

9 ReLU 128× 13× 13

10 Max pooling 128× 6× 6 2× 2 2 0

11 FC 512 1× 1

12 Dropout 512

13 FC 512 1× 1

14 Dropout 512

15 FC 2 1× 1

units coming from the previous layer were ignored in the

training of the successive layer. Weights in all the layers

were initialized using the algorithm of Glorot and Bengio

[25]. The network was trained to minimize the Softmax

loss function by means of backpropagation and Mini-Batch

Stochastic Gradient Descent, with mini-batches of 32 sam-

ples. Standardization was applied to the inputs by mean

subtraction and normalization to unit variance [26]. The

learning rate was initially set to 10−3 and decreased by a

factor of 10 every 120, 000 iterations. In total, the learning

rate was decreased 5 times, and the learning was stopped

after 24 epochs (1 epoch = 25, 000 iterations), i.e., when

the loss function did not decrease significantly. Momentum

and weight decay were set respectively to 0.9 and 5×10−4.

We used the Caffe framework [27] for the implementation

of the network, and all the experiments were conducted on

a machine with 2 Intel Xeon e5-2609 processors, 256 GB

of RAM and 2 GPU NVIDIA TitanX Pascal.

V. RESULTS

The performances of the segmentation algorithms were

evaluated on the 20 test images of the DRIVE database,

with and without preprocessing. All algorithms produced

soft output images in which pixels were associated with a

degree of membership to the vessel class. The Receiving

Operator Characteristics (ROC) curves were then computed

with the True Positive Ratio (TPR) versus the False Positive

Ratio (FPR) with respect to the varying threshold value

applied to the soft outputs. A close-up of the resulting ROC

curves is shown in Fig. 2 for typical sensitivity/specificity

Table II
AUC% AND ACCURACY% PERFORMANCES OF VESSEL SEGMENTATION

APPLIED TO THE TEST IMAGES IN DRIVE W/O PREPROCESSING

(UNPRO) AND W/ ILLUMINATION CORRECTION BY DEHAZING (DH).
STATISTICALLY SIGNIFICANTLY RESULTS ARE LISTED IN BOLD.

Method Metric UNPRO DH DH− UNPRO

Sum of top-hats AUC 93.79 93.93 +0.14 (p < 0.001)

Sum of top-hats Accuracy 94.40 94.53 +0.13 (p < 0.001)

CNN AUC 97.07 97.29 +0.23 (p < 0.001)

CNN Accuracy 94.76 94.93 +0.17 (p < 0.001)

ranges (TPR ≥ 70% and 1 − FPR ≥ 90%). To quantify

the performance of the different methods, the area under

the ROC curve (AUC) was calculated. AUC is a measure

suitable even when the samples in the two classes are

unbalanced, as is the case of the blood vessels in retinal

images, where the number of non-vessel pixels is higher than

the number of vessel pixels [28]. In Table II (columns 3-4)

AUC performance is reported along with the classification

accuracy, which is commonly adopted in the literature.

To determine statistically significantly differences in AUC
and accuracy, we applied the bootstrap procedure [29] as in

[30]. The test set was randomly sampled with replacement

1,000 times so that each new set of sampled data contained

the same number of examples as the original set. For each

vessel segmentation method, we calculated the differences

in AUC and accuracy between the illumination-corrected

and unprocessed images. Resampling 1,000 times resulted

in 1,000 values for the performance differences. P -values

were defined as the fraction of values that were negative

or zero, corresponding to cases in which the vessel seg-

mentation with preprocessing performed worse or equally

than without preprocessing. The statistical significance level

was chosen as 5% and, thus, performance differences were

considered statistically significant if p < 0.05. The resulting

performance differences are reported in Table II (column 5).

In all cases, a statistically significantly better performance

was achieved when illumination correction was applied.

VI. DISCUSSION AND CONCLUSIONS

In the present study, we have established a new con-

nection between the problem of illumination correction in

retinal color fundus images and the apparently unrelated

problem of haze removal in open-air images. We applied

a popular dehazing method, namely the Dark Channel prior

method, to the images in the inverted intensity domain. This

resulted in an illumination correction of the original images

that enhanced the performance of vessel segmentation. We

showed this using two different segmentation approaches,

one supervised and one unsupervised, obtaining similar

improvements for both methods. Even though statistically

significant, the improvement in performance was rather
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Figure 2. Partial ROC curves of the two vessel tree segmentation algorithms applied to the test images in DRIVE before (unprocessed) and after
(dehazed) preprocessing.

small, ranging between +0.14 and +0.23 of AUC%. It

should be noted, however, that the DRIVE database con-

tains images selected ad-hoc for the task of automated

vessel segmentation. For example, using the DRIIL (Digital

Retinal Images for ILlumination correction) database [31],

that spans a wide range of illumination conditions, could

yield better improvements. However the DRIIL database

lacks vessel annotations. In future work we will investigate

how to combine DRIVE and DRIIL databases to yield

a new set of images suited for both vessel segmentation

and illumination correction. Future directions also include

experimenting other existing dehazing methods to solve the

illumination correction model proposed in this work, and

testing these methods in combination with a wide selection

of vessel segmentation algorithms and methods designed

to face the asymmetry between the classes [32], [33]. If

successful, this would lead to an entire new family of simple

and effective alternative illumination correction methods.
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